Pole topology of the structure functions of continuous systems.
نویسندگان
چکیده
We develop a theory of the pole topology of the Laplace transform of the structure functions of continuous N component systems based on the Wiener-Hopf technique. We classify systems according to the spectrum of the NxN matrix Q(t), with elements Q(ij)(t)=delta(ij)-2pi square root [rho(i)rho(j)]integrale(-tr)q(ij)(r)dr, associated with their factor functions q(ij)(r). For the simplest nontrivial class of systems--namely, that with only two eigenvalues of Q(t) different from one--a full and explicit analysis of the pole topology is possible. We illustrate the theory with exactly solvable examples, such as the Percus-Yevick equation for arbitrary mixtures of hard spheres (HS) and polydisperse HS and the mean spherical model for binary mixtures of adhesive spheres.
منابع مشابه
INTERSECTION OF ESSENTIAL IDEALS IN THE RING OF REAL-VALUED CONTINUOUS FUNCTIONS ON A FRAME
A frame $L$ is called {it coz-dense} if $Sigma_{coz(alpha)}=emptyset$ implies $alpha=mathbf 0$. Let $mathcal RL$ be the ring of real-valued continuous functions on a coz-dense and completely regular frame $L$. We present a description of the socle of the ring $mathcal RL$ based on minimal ideals of $mathcal RL$ and zero sets in pointfree topology. We show that socle of $mathcal RL$ is an essent...
متن کاملPOINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS
We study the space of all continuous fuzzy-valued functions from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$ endowed with the pointwise convergence topology. Our results generalize the classical ones for continuous real-valued functions. The field of applications of this approach seems to be large, since the classical case allows many known devices to be fi...
متن کاملPointfree topology version of image of real-valued continuous functions
Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree version of $C_c(X).$The main aim of this paper is to present t...
متن کاملCountable composition closedness and integer-valued continuous functions in pointfree topology
For any archimedean$f$-ring $A$ with unit in whichbreak$awedge (1-a)leq 0$ for all $ain A$, the following are shown to be equivalent: 1. $A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all integer-valued continuous functions on some frame $L$. 2. $A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$ of all integer-valued continuous functions, in the usual se...
متن کاملISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES CONSIDERING WEIGHT MINIMIZATION AND LOCAL STRESS CONSTRAINTS
The Isogeometric Analysis (IA) is utilized for structural topology optimization considering minimization of weight and local stress constraints. For this purpose, material density of the structure is assumed as a continuous function throughout the design domain and approximated using the Non-Uniform Rational B-Spline (NURBS) basis functions. Control points of the density surface are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 65 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2002